Field-Effect Transistors: Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters (Adv. Mater. 8/2017)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters.

Ambipolar perovskite field-effect transistors and inverters with balanced mobilities are demonstrated. Thin-film field-effect-transistor-like inverters are developed, and a maximum gain of 23 in the first quadrant for VDD = 80 V is obtained.

متن کامل

High-gain inverters based on WSe2 complementary field-effect transistors.

In this work, the operation of n- and p-type field-effect transistors (FETs) on the same WSe2 flake is realized,and a complementary logic inverter is demonstrated. The p-FET is fabricated by contacting WSe2 with a high work function metal, Pt, which facilities hole injection at the source contact. The n-FET is realized by utilizing selective surface charge transfer doping with potassium to form...

متن کامل

Diamond Field Effect Transistors

High-quality single crystal diamond has been used to demonstrate the RF performance of hydrogenterminated diamond field effect transistors of varying gate lengths; this includes the first data on a sub100nm diamond transistor. The RF performance for 220nm, 120nm and 50nm gate length transistors was extracted and a cut-off frequency of 55 GHz was measured for the 50nm device. This is the highest...

متن کامل

Organic Field-Effect Transistors

Organic field-effect transistors (OFETs) were first described in 1987. Their characteristics have undergone spectacular improvements during the last two or three years. At the same time, several models have been developed to rationalize their operating mode. In this review, we examine the performance of OFETs as revealed by recently published data, mainly in terms of field-effect mobility and o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Materials

سال: 2017

ISSN: 0935-9648

DOI: 10.1002/adma.201770057